RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2016

FIRST YEAR [BATCH 2016-19]

INDUSTRIAL CHEMISTRY [Honours]

Date : 13/12/2016 Time : 11 am – 3 pm

Paper : I

Full Marks: 75

[Use a separate Answer Book for each Group]

<u>Group – A</u>

[5 x 5]

[3+2]

- 1. a) Draw the orbital picture of allene indicating the state of hybridisation of carbon atoms.
 - b) Arrange ortho, meta and para dichlorobenzene in increasing order of dipole moment with proper explanation.
 - c) The dipole moment of CO_2 is zero. Comment on the shape of the molecule. [2+2+1]
- 2. a) Draw the Newman Projection formula of erythro-3-phenyl-2 butylacetate.
 - b) Write the conditions of a molecule to be optically active.
 - c) Explain the term 'chirotopic' and 'stereogenic' with proper example. [2+1+2]
- 3. a) Which one is more nucleophilic and why?
 - (i) RO^{-} and $RCOO^{-}$ (ii) NH_3 and H_2O
 - b) Complete the following sequences:

$$\begin{array}{c} Ph \\ H & \longrightarrow \\ H_{3}C \end{array} \xrightarrow{Ph} A \xrightarrow{CH_{3}COO} B \xrightarrow{\bigcirc} B \xrightarrow{\bigcirc} C \xrightarrow{ArSO_{2}Cl} D \xrightarrow{E} H \xrightarrow{Ph} \\ H_{3}C \end{array} \xrightarrow{Ph} I \qquad [2+3]$$

- 4. a) Comment on the stereochemistry and stability of a tertiary carbocation.
 - b) The rate of reaction of methyliodide with azide increases several fold with the change of solvent from methanol to DMSO. Explain
 - c) Hydrolysis of methyl chloride takes place much faster rate in presence of sodium iodide. Explain. [2+1¹/₂+1¹/₂]
- 5. a) Write two conditions for a molecule to exhibit geometrical isomerism.
 - b) Why ethylene glycol exists exclusively in the gauche form?
 - c) Explain the statement: "An optically pure sample of \odot 2-butanol shows a specific rotation 13.6⁰. [2+2+1]
- 6. a) Draw the energy profile diagram of E1, E2 and E1cB mechanism of elimination reaction.
 - b) Write the product of the following reaction with detailed mechanism:

Meso-2,3-dibromobutane Zn metal

- 7. a) What do you mean by nucleofuge?
 - b) Give an example of $S_N i$ reaction and explain the mechanism.

c) Arrange the following molecules in decreasing order of rate of hydrolysis with proper justification: [1+2+2]

- 8. a) Write the product of hydrolysis of (S)-2-bromopropanoate with high and low concentration of hydroxide ion. Justify the stereochemistry of product formation in both cases.
 - b) Explain the formation of major product of the following reaction.

<u>Group – B</u> (Answer <u>any five</u> questions) [5 × 5]

[3+2]

- 9. a) Electron affinity of chlorine is higher than that of fluorine —Explain.
 - b) Indicate the type of semiconduction (*n* or *p*) in the followings:(i) As doped Ge (ii) In doped Si
 - c) Determine the limiting radius ratio for an octahedral Lattice. $[1\frac{1}{2}+1+2\frac{1}{2}]$
- 10. a) Discuss the conductivity, semiconductivity and insulation properties of metals by band theory with pictorial representation.
 - b) What are the four quantum numbers?
 - c) Calculate the A-R electronegativity of Zn taking its covalent radius as 125 pm. $[2\frac{1}{2}+1+1\frac{1}{2}]$

11. a) Calculate the electronegativity of iodine in *IF* and *IF*₇ by Pauling scale (Taking $x_F = 4.0$). Given I - F bond energy in *IF* = 278 KJ mol⁻¹

- I F bond energy in $IF_7 = 231$ KJ mol⁻¹
- I I bond energy in $I_2 = 149$ KJ mol⁻¹
- F F bond energy in $F_2 = 155$ KJ mol⁻¹
- b) Compare and explain about the magnitude of 1st and 2nd electron affinity of oxygen and sulphur from the data given below:

$$O_{(g)} \xrightarrow{+e} O_{(g)}^{-} (\Delta H = -141 \, KJ \, mol^{-1}), O_{(g)}^{-} + e \rightarrow O_{(g)}^{2-} (\Delta H = +844 \, KJ \, mol^{-1})$$

$$S_{(g)} \xrightarrow{+e} S_{(g)}^{-} (\Delta H = -200 \, KJ \, mol^{-1}), S_{(g)}^{-} + e \rightarrow S_{(g)}^{2-} (\Delta H = +590 \, KJ \, mol^{-1})$$

$$[2^{1/2}+2^{1/2}]$$

- 12. a) Write down the expression of Lattice energy for an ionic solid and explain the terms involved therein.
 - b) Write down the name and symbol of the element of atomic number 116 according to IUPAC nomenclature (2002).
 - c) First ionization energy of Ti (22), Zr (40) and Ht (72) are as follows 658, 674 and 760 (KJ mol⁻¹). Explain this phenomenon. [2+1+2]

- 13. Write the Bohr's basic postulates for its atomic model and deduce the expression for energy of the revolving electron in Bohr's orbit (In SI unit).
- 14. a) Explain the fine spectra obtained in the light of Somerfield's first modification when electron transition takes place from n = 3 to n = 2.
 - b) With pictorial representation show the ground state electron distribution (configuration) of p^3 following Hund's rules. [2¹/₂+2¹/₂]
- 15. a) Write the significance of magnetic Quantum number.
 - b) Derive the expression of radius of Bohr's orbit (In SI unit) and show that the radius of first Bohr orbit of a hydrogen atom is 53 picometer (1 picometer = 10^{-12} m). [2+3]
- 16. a) Determine the ground state term symbol of Co^{3+} ion.
 - b) The melting point of MgBr₂ is 700° C while that of AlBr₃ is only 97° C Explain.
 - c) Explain the degree of solubility of the following salts given below: LiClO₄, NaClO₄ and KClO₄
 [1¹/₂+2+1¹/₂]

<u>Group – C</u> (Answer <u>any five</u> questions) [5×5]

- 17. Write down the three dimensional Maxwell velocity distribution law for ideal gas with graphical representation. Calculate average velocity from the equation. [2¹/₂+2¹/₂]
- 18. Apply the equipartition principle to calculate γ for an ideal gas that is non linear tri atomic. Calculate critical temperature (T_c) , pressure (P_c) and volume (V_c) from Van der Waals equation for real gas. [2+3]
- 19. a) State the zeroth law of thermodynamics.
 - b) Differentiate between state functions and path functions.
 - c) What is Clausius inequality?
- 20. State second law of thermodynamics. 20g of hydrogen gas at 27^{0} C are compressed isothermally to one-fourth of the original volume. Find the value of work done. [2+3]
- 21. Write and explain Gibbs phase rule. Prove that the maximum number of phases that can coexist in equilibrium is 3 for one component pVT system. $[2\frac{1}{2}+2\frac{1}{2}]$
- 22. State and explain Carnot's theorem. Show that $\frac{E_s}{E_T} = \frac{C_P}{C_V}$ by using Jacobian. *E* is elastic bulk modulus. [2+3]
- 23. What is Joule Thomson effect? What is inversion temperature? Show $T dS = C_p dT - TV \alpha dp$ [α = volume expansivity] [2+1+2]
- 24. Define triple point. Indicate it for water in its phase diagram and hence explain the anomalous behaviour of water. [2+3]

[5]

[1+2+2]